首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8076篇
  免费   286篇
  国内免费   233篇
  2023年   116篇
  2022年   50篇
  2021年   147篇
  2020年   168篇
  2019年   194篇
  2018年   197篇
  2017年   141篇
  2016年   162篇
  2015年   167篇
  2014年   195篇
  2013年   557篇
  2012年   147篇
  2011年   240篇
  2010年   211篇
  2009年   260篇
  2008年   280篇
  2007年   310篇
  2006年   286篇
  2005年   229篇
  2004年   250篇
  2003年   240篇
  2002年   216篇
  2001年   189篇
  2000年   168篇
  1999年   165篇
  1998年   156篇
  1997年   164篇
  1996年   144篇
  1995年   171篇
  1994年   183篇
  1993年   144篇
  1992年   146篇
  1991年   147篇
  1990年   139篇
  1989年   104篇
  1988年   126篇
  1987年   115篇
  1986年   91篇
  1985年   186篇
  1984年   205篇
  1983年   160篇
  1982年   238篇
  1981年   155篇
  1980年   150篇
  1979年   126篇
  1978年   68篇
  1977年   46篇
  1976年   56篇
  1974年   23篇
  1973年   25篇
排序方式: 共有8595条查询结果,搜索用时 26 毫秒
41.
Measurement of chemically induced DNA repair as unscheduled DNA synthesis in rodent liver following in vivo treatment is a useful screen for potential hepatocarcinogens. In addition to measurement of unscheduled DNA synthesis, examination of S-phase synthesis provides an indicator of chemically induced cell proliferation in the liver, which may be a basis for hepatic tumor promotion. Several chemicals and classes of chemicals have been examined using these endpoints. The pyrrolizidine alkaloid riddelline is a potent genotoxic agent in vitro, and in vivo studies confirm this response as riddelline induces significant elevations in unscheduled DNA synthesis and S-phase synthesis in rat liver. Conversely, H. C. Blue dyes #1 and #2 are both potent genotoxic agents in vitro but fail to express this genotoxicity in vivo. H. C Blue #1 induces significant increases in S-phase synthesis in B6C3F1 mouse liver, which correlates with the observed carcinogenicity of this compound. Halogenated hydrocarbons likewise fail to induce unscheduled DNA synthesis in vivo, but many of these compounds do increase hepatic cell proliferation in mice, which may be the principal mechanism of hepatocarcinogenesis in this species.Abbreviations BCMEE bis(2-chloro-l-methylethyl)ether - dThd thymidine - HCB1 H.C. Blue #1 - HCB2 H.C. Blue #2 - UDS unscheduled DNA synthesis  相似文献   
42.
Yeast submitochondrial particles, in a Pi- and NADH-dependent reaction, produced low concentrations of free ATP in the absence of added ADP. This formation of free ATP, as measured by the luciferin-luciferase method, was strongly stimulated by oligomycin. For maximal stimulation, oligomycin was to be added not earlier than 5–10 min after the addition of NADH. Upon addition of antimycin or FCCP the system was completely inhibited. The amount of free ATP formed corresponded to one-third of the amount of bound ATP in submitochondrial particles. The stimulatory effect of oligomycin disappeared if the submitochondrial particles were spun down after oligomycin stimulation and then resuspended in the reaction medium, whereas submitochondrial particles with no oligomycin added initially were stimulated by oligomycin after the same procedure. A different picture emerged with addition of ADP. If the submitochondrial particles were preenergized with NADH in the presence of oligomycin before the addition of ADP the formation of free ATP upon subsequent addition of ADP was inhibited by oligomycin. In the presence of oligomycin, but lacking preenergization with NADH, a stimulation of free ATP formation was achieved with added ADP. A possible explanation for the stimulating effect of oligomycin on ATP formation in the absence of added ADP is that it enhances the release of bound ATP in an energy-requiring process. The release of only about one-third of the bound ATP could indicate that one of three nucleotide-binding subunits involved in the mechanism of ATP formation by ATP synthase is in a state suitable for such an energy-dependent release of ATP.  相似文献   
43.
The effect of cycloheximide and puromycin on 20-hydroxyecdysone-induced protein synthesis in wing discs of Drosophila melanogaster has been studied by one-dimensional and two-dimensional SDS polyacrylamide electrophoresis. It is found that puromycin, but not cycloheximide, when applied simultaneously with the hormone enhanced the hormone-induced synthesis of the early and late proteins. However, when puromycin was applied after hormone treatment, only the late proteins were induced. The possible implication of these observations is discussed.  相似文献   
44.
45.
H. Edelmann  P. Schopfer 《Planta》1989,179(4):475-485
The kinetics of inhibition by protein- and RNA-synthesis inhibitors (cycloheximide and cordycepin, respectively) of indole-3-acetic acid (IAA)-induced elongation growth were investigated using abraded coleoptile segments of Zea mays L. Removal of the cuticle — a diffusion barrier for solutes — by mechanical abrasion of the outer epidermal cell wall increased the effectiveness of inhibitors tremendously. In an attempt to elucidate the role of growth-limiting protein(s) (GLP) in the growth mechanism the following results were obtained. The elongation induced by IAA was completely inhibited when cycloheximide (10 mol·l-1) was applied to abraded coleoptile segments as shortly as 10 min before the onset of the growth response (=5 min after administration of IAA). However, when cycloheximide was applied after 60 min of IAA treatment (when a steady-state growth rate is reached), the time required for complete cessation of growth was much longer (about 40 min). Cycloheximide inhibited the incorporation of [3H]leucine into protein within about 5 min. Cordycepin (400 mol·l-1) prevented IAA-induced growth when applied as shortly as 25 min before the onset of the growth response (=10 min before administration of IAA) but required more than 60 min for a full inhibition of steady-state growth. The incorporation of [3H]adenosine into RNA was inhibited by cordycepin within 10 min. It is concluded that, contrary to previous investigations with nonabraded organ segments, the initiation of growth by IAA depends directly on the synthesis of GLP. Moreover, the apparent lifetime of GLP is at least four times longer than the time required by cycloheximide to inhibit the initiation of growth by IAA. This is interpreted to mean that GLP is not present before IAA starts to act but is synthesized as a consequence of IAA action starting a few minutes before the initiation of growth. Interpreting the kinetics of growth inhibition by cordycepin in a similar way, we further conclude that GLP synthesis is mediated by IAA-induced synthesis of the corresponding mRNA which starts about 10 min before the onset of GLP synthesis. Inhibition by cycloheximide and cordycepin of IAA-induced growth cannot be alleviated by acidifying the cell wall to pH 4-5, indicating that these inhibitors do not act on growth via an inhibition of auxin-mediated proton excretion.Abbreviations CHI cycloheximide - COR cordycepin - GLP growth-dimiting protein(s) - IAA indole-3-acetic acid - mRNAGLP mRNA coding for GLP  相似文献   
46.
Summary Streptomycin-resistant colonies were isolated from protoplast cultures of haploid Nicotiana plumbaginifolia based on their ability to green in medium containing 1 mg/ml streptomycin sulfate. The frequency of resistant colonies was 0.9×10–5 in nonmutagenized culture, and increased ten-fold following treatment of culture with 10 g/ml N-methyl-N-nitro-N-nitrosoguanidine. Of a total of 52 resistant clones isolated, 2 gave rise to haploid, 15 to diploid, and 3 to tetraploid plants upon transfer of calli to differentiation medium. Leaf-segment and protoplast assays showed that all diploid regenerates were resistant to streptomycin but sensitive to chloramphenicol, kanamycin, lincomycin, neomycin, and spectinomycin. Plants in most diploid clones were fertile and able to set seeds when self-fertilized and crossed reciprocally to wild-type plants. Inheritance of streptomycin resistance was studied in the diploid clones and, without exception, the resistance was transmitted maternally. Comparative studies of the ultrastructure of organelles and protein synthesis in isolated chloroplasts between wild-type and resistant clones in the presence of streptomycin suggest that streptomycin resistance is controlled by chloroplasts.  相似文献   
47.
In this paper we describe the organization and expression of the genes encoding the flavonoid-biosynthetic enzyme dihydroflavonol-4-reductase (DFR) in Petunia hybrida. A nearly full-size DFR cDNA clone (1.5kb), isolated from a corolla-specific cDNA library was compared at the nucleotide level with the pallida gene from Antirrhinum majus and at the amino acid level with enzymes encoded by the pallida gene and the A1 gene from Zea mays.The P. hybrida and A. majus DFR genes transcribed in flowers contain 5 introns, at identical positions; the three introns of the A1 gene from Z. mays coincide with first three introns of the other two species. P. hybrida line V30 harbours three DFR genes (A, B, C) which were mapped by RFLP analysis on three different chromosomes (IV, II and VI respectively).Steady-state levels of DFR mRNA in the line V30 follow the same pattern during development as chalcone synthase (CHS) and chalcone flavanone isomerase (CHI) mRNA. Six mutants that accumulate dihydroflavonols in mature flowers were subjected to Northern blot analysis for the presence of DFR mRNA. Five of these mutants lack detectable levels of DFR mRNA. Four of these five also show drastically reduced levels of activity for the enzyme UDPG: flavonoid-3-O-glucosyltransferase (UFGT), which carries out the next step in flavonoid biosynthesis; these mutants might be considered as containing lesions in regulatory genes, controlling the expression of the structural genes in this part of the flavonoid biosynthetic pathway. Only the an6 mutant shows no detectable DFR mRNA but a wild-type level for UFGT activity. Since both an6 and DFR-A are located on chromosome IV and DFR-A is transcribed in floral tissues, it is postulated that the An6 locus contains the DFR structural gene. The an9 mutant shows a wild-type level of DFR mRNA and a wild-type UFGT activity.  相似文献   
48.
DNA replication in maize leaf protoplasts   总被引:1,自引:0,他引:1  
Maize leaf protoplasts were investigated for their metabolic competence and capacity to synthesize DNA. When protoplasts were incubated at elevated temperatures, they exhibited a heat shock response with specific proteins being preferentially synthesized. This indicated that the protoplasts were fully metabolically functional and capable of responding to environmental stimuli. Significant DNA synthesis was observed in these protoplasts after incorporation of 3H-thymidine into chromatin by trichloroacetic acid precipitation and by incorporation of 5-bromo-2-deoxyuridine (BrdU), an analog of thymidine, detected by immunofluorescence. The immunocytochemical method revealed that about 50% of nuclei in the maize leaf protoplasts were labelled after 3 days of culture and that most of these nuclei were labelled as intensely as normal mitotic cells. Aphidicolin, an inhibitor of DNA polymerase-, decreased the percentage of labelled nuclei, demonstrating that the labelling was substantially due to replicative DNA synthesis. However, chromosome condensation was not observed. It is proposed that these protoplasts are capable of DNA synthesis, but incapable of nuclear division. Effects of media additives on the number of nuclei entering S phase in these protoplasts were also assessed by the immunocytochemical method. Inclusion of 80mM Ca2+ in the enzyme solution increased protoplast yield and also appeared beneficial to DNA synthesis. The antioxidant, n-propyl gallate, which was used to stabilize the protoplasts, delayed the onset of DNA synthesis. Arginine and spermidine produced a slight increase in DNA synthesis.Abbreviations BrdU 5-bromo-2-deoxyuridine - DMSO dimethyl sulfoxide - n-PG n-propyl gallate - PBS phosphate-buffered saline Dedicated to Dr. Friedrich Constabel on the occasion of his 60th birthday  相似文献   
49.
Studies were carried out on glutamate dehydrogenase (GDH, EC 1.4.1.2) isolated from the SB1 and SB3 soybean (Glyciene max L. cv. Mandarin) cell cultures. The NAD(H) dependent enzyme from SB1 and SB3 cells was purified to homogeneity, and that from the SB3 cells studied in detail. It was shown to be activated by calcium. The molecular weight of the native enzyme was found to be 263 000 ± 12 000. The molecular weight of the subunits was shown to be 41 000 ± 2000, which indicates that the enzyme has a hexameric structure. Anti-GDH antibodies were produced in rabbits, to GDH purified to homogeneity from both cell cultures. Each antibody preparation reacted with the purified enzyme produced from either cell culture. Antibodies to GDH from SB3 cells were utilized to study the apparent induction of GDH, which occurs when these cells are grown in a medium with ammonium ions as the sole nitrogen source. The increase in GDH activity was shown to be due to de-novo protein synthesis. The anti-SB3-GDH antibody preparation was also tested for cross reactivity with crude GDH preparations from a number of plant sources, and purified GDH from a number of other organisms. The antibody was shown to cross react with a number of the GDH preparations.  相似文献   
50.
Summary The course of glycerol biosynthesis, initiated by exposure to –4°C, was monitored in larvae of the goldenrod gall moth,Epiblema scudderiana, and accompanying changes in the levels of intermediates of glycolysis, adenylates, glycogen, glucose, fructose-2,6-bisphosphate, and fermentative end products were characterized. Production of cryoprotectant was initiated within 6 h after a switch from +16° to –4°C, with halfmaximal levels reached in 30 h and maximal content, 450–500 mol/g wet weight, achieved after 4 days. Changes in the levels of intermediates of the synthetic pathway within 2 h at –4°C indicated that the regulatory sites involved glycogen phosphorylase, phosphofructokinase, and glycerol-3-phosphatase. A rapid increase in fructose-2,6-bisphosphate, an activator of phosphofructokinase and inhibitor of fructose-1,6-bisphosphatase, appeared to have a role in maintaining flux in the direction of glycerol biosynthesis. Analysis of metabolite changes as glycerol production slowed suggested that the inhibitory restriction of the regulatory enzymes was slightly out of phase. Inhibition at the glycerol-3-phosphatase locus apparently occurred first and resulted in a build-up of glycolytic intermediates and an overflow accumulation of glucose. Glucose inhibition of phosphorylase, stimulating the conversion of the activea to the inactiveb forms, appears to be the mechanism that shuts off phosphorylase function, counteracting the effects of low temperature that are the basis of the initial enzyme activation. Equivalent experiments carried out under a nitrogen gas atmosphere suggested that the metabolic make-up of the larvae in autumn is one that obligately routes carbohydrate flux through the hexose monophosphate shunt. The consequence of this is that fermentative ATP production during anoxia is linked to the accumulation of large amounts of glycerol as the only means of maintaining redox balance.Abbreviations G6P glucose-6-phosphate - F6P fructose-6-phosphate - F1, 6P fructose-1,6-bisphosphate - F2,6P 2 fructose-2,6-bisphosphate - G3P grycerol-3-phosphate - DHAP dinydroxyacetonephosphate - GAP glyceraldehyde-3-phosphate - PEP phosphoenolpyruvate - PFK phosphofructokinase - FBPase fructose-1,6-bisphosphatase - PK pyruvate kinase  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号